光触媒PHOTOCATALYSIS是光 Photo=Light + 触媒(催化剂)catalyst的合成词。光触媒是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,光触媒是利用自然界存在的光能转换成为化学反应所需的能量,来产生催化作用,使周围之氧气及水分子激发成具氧化力的自由负离子。几乎可分解所有对人体和环境有害的有机物质及部分无机物质,不仅能加速反应,亦能运用自然界的定侓,不造成资源浪费与附加污染形成。具代表性的例子为植物的"光合作用",吸收对动物有毒之二氧化碳,利用光能转化为氧气及水。
光催化原理
半导体光催化剂大多是n型半导体材料(当前以为TiO2使用广泛)都具有区别于金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带(ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。由于半导体的光吸收阈值与带隙具有式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至终产物CO2和H2O,甚至对一些无机物也能彻底分解。
光催化能源开发
由于是借助光的能量促使水分子分解反应,因此后来将这一现象中 的氧化钛称作光触媒。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期待甚为殷切, 因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间内提取大量的氢气,所以利用于新能源的开发终 究无法实现,因此在轰动一时后迅速降温。 1992年次二氧化钛光触媒研讨会在加拿大举行, 日本的研究机构发表许多关于光触媒的新观念,并提出 应用于氮氧化物净化的研究成果。二氧化钛相关的 专利数目亦多,其它触媒关连技术则涵盖触媒调配的 制程、触媒构造、触媒担体、触媒固定法、触媒性能测 试等。以此为契机,光触媒应用于抗菌、防污、空气净 化等领域的相关研究急剧增加,从1971年至2000年6月 总共有10,717件光触媒的相关专利提出申请。二氧化钛光触媒的广泛应用,将为人们带来清洁的环境、健 康的身体。 长度的基本度量单位为米,10 -9 米称为纳 米(Nanometer; nm)。各种应用材料也将由微米逐渐进入纳米时代。 纳米材料由晶粒1~100nm大小的粒子所组成。粒径为微细,具 有大的比表面积,且随着粒径的减少,表面原子百分比提高。 由于在表面上存在大量原子配位不完全而引起高表面能的现象,表 面能量占全能量的比例大幅提高,使纳米材料在吸附、光吸收等方面具有新的特性。
光触媒是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,就象植物的光合作用中的叶绿素。光触媒的材料多种多样,但是为和研究为彻底的是纳米二氧化钛。光触媒在太阳光的照射下能产生羟基自由基、超氧自由基等活性物种,因而具备抗菌、除臭、油污分解、防霉防藻、空气净化的作用。
友情链接: